Hardware spiking neural network with run-time reconfigurable connectivity in
نویسندگان
چکیده
A cellular hardware implementation of a spiking neural network with run-time reconfigurable connectivity is presented. It is implemented on a compact custom FPGA board which provides a powerful reconfigurable hardware platform for hardware and software design. Complementing the system, a CPU synthesized on the FPGA takes care of interfacing the network with the external world. The FPGA board and the hardware network are demonstrated in the form of a controller embedded on the Khepera robot for a task of obstacle avoidance. Finally, future implementations on new multi-cellular hardware are discussed.
منابع مشابه
Gaussian and exponential lateral connectivity on distributed spiking neural network simulation
We measured the impact of long-range exponentially decaying intra-areal lateral connectivity on the scaling and memory occupation of a distributed spiking neural network simulator compared to that of short-range Gaussian decays. While previous studies adopted short-range connectivity, recent experimental neurosciences studies are pointing out the role of longer-range intra-areal connectivity wi...
متن کاملEmbedded spiking neural networks
In this paper we introduce the ongoing research at our department concerning hardware implementations of spiking neural networks on embedded systems. Our goal is to implement a spiking neural network in reconfigurable hardware, more specifically embedded systems. Keywords— Hardware neural networks, embedded sys-
متن کاملAn FPGA platform for on-line topology exploration of spiking neural networks
In this paper we present a platform for evolving spiking neural networks on FPGAs. Embedded intelligent applications require both high performance, so as to exhibit real-time behavior, and flexibility, to cope with the adaptivity requirements. While hardware solutions offer performance, and software solutions offer flexibility, reconfigurable computing arises between these two types of solution...
متن کاملEMBRACE: Emulating Biologically–Inspired Architectures on Hardware
This paper highlights and discusses the current challenges in the implementation of large scale Spiking Neural Networks (SNNs) in hardware. A mixed-mode approach to realising scalable SNNs on a reconfigurable hardware platform is presented. The approach uses compact low power analogue spiking neuron cells, with a weight storage capability, interconnected using Network on Chip (NoC) routers. Res...
متن کاملMultiplier-less reconfigurable architectures for spiking neural networks
Recent advances in the area of reconfigurable hardware (such as field-programmable gate arrays, FPGAs) have made it possible to implement complex systems in comparatively little time. One of the drawbacks of implementing neural systems on reconfigurable platforms is that the neurons take up much more device area than custom hardware. Thus, the number of spiking neurons that can operate on a sin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003